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SUMMARY

Progress in electron microscopy-based high-resolu-
tion connectomics is limited by data analysis
throughput. Here, we present SegEM, a toolset for
efficient semi-automated analysis of large-scale fully
stained 3D-EM datasets for the reconstruction of
neuronal circuits. By combining skeleton reconstruc-
tions of neurons with automated volume segmenta-
tions, SegEM allows the reconstruction of neuronal
circuits at a work hour consumption rate of about
100-fold less than manual analysis and about 10-
fold less than existing segmentation tools. SegEM
provides a robust classifier selection procedure for
finding the best automated image classifier for
different types of nerve tissue. We applied these
methods to a volume of 44 3 60 3 141 mm3 SBEM
data from mouse retina and a volume of 93 3 60 3
93 mm3 from mouse cortex, and performed exem-
plary synaptic circuit reconstruction. SegEM re-
solves the tradeoff between synapse detection and
semi-automated reconstruction performance in
high-resolution connectomics and makes efficient
circuit reconstruction in fully-stained EM datasets a
ready-to-use technique for neuroscience.

INTRODUCTION

Mapping neuronal circuits at single-cell resolution is the goal of

high-resolution connectomics (Helmstaedter, 2013, Denk et al.,

2012, Lichtman andDenk, 2011).While 3D-EM imagingmethods

have progressed substantially (Denk and Horstmann, 2004,

Knott et al., 2008, Hayworth et al., 2006, Helmstaedter et al.,

2013, Takemura et al., 2013; for a review, see Briggman and

Bock, 2012), and 3D-EM imaging setups are being installed in

many laboratories worldwide, the reconstruction speed of such

data is lagging behind by at least 3 orders of magnitude (Helm-

staedter, 2013). Fully automated reconstruction approaches

have not provided the required reconstruction accuracy to

date (Funke et al., 2012; Andres et al., 2012a, 2012b; Vazquez-

Reina et al., 2011; Seyedhosseini et al., 2011, 2013; Jain et al.,

2007, 2010a, 2011; Turaga et al., 2009, 2010; Ciresan et al.,

2012; Kaynig et al., 2015; Nunez-Iglesias et al., 2014; Sommer

et al., 2011; Liu et al., 2014). Instead, combinations of massive
Neu
manual annotation with automated analysis methods have

yielded first substantial connectivity maps in the fly optical sys-

tem (Takemura et al., 2013) and mouse retina (Helmstaedter

et al., 2013).

However, these approaches were limited either by analysis

speed when proofreading pre-segmented data (Takemura

et al., 2013; 14,400 hr investment for 105 mm circuit path length)

or by the lack of direct synapse identification when using special

cell-membrane-enhanced EM staining (Briggman et al., 2011;

Helmstaedter, 2013; �20,000 hr investment for 640 mm circuit

path length).

In fact, even small blocks of neuronal tissue (Figures 1A and

1B) contain enormous amounts of local neuronal circuitry: for

example, a block of mouse retina sized 44 mm 3 60 mm 3

141 mm on a side contains about 400 cell bodies, 1.5 m of

neuronal wires, and 0.5 million chemical synapses (Figure 1A;

Briggman et al., 2011; Helmstaedter et al., 2013). To reconstruct

neuronal circuits from such a sizeable volume of neuronal tissue,

dendrites and axons of all neurons have to be followed through

the dataset and all synapses identified. Unequivocal synapse

identification requires the staining of synaptic vesicles and po-

tential postsynaptic structures. Such conventionally stained

3D-EMdata (Figures 1C and 1D), however, also stainsmitochon-

dria and other intracellular structures, which results in highly

overlapping single-voxel gray value distributions (Figure 1E).

The fully manual volume reconstruction of neuronal circuits in

such a 3D-EMdataset (Figures 1A and 1B) would consume enor-

mous amounts of human work hours even for medium-sized

circuits. The reconstruction of neuronal circuits between, for

example, 100 input axons and 100 postsynaptic neurons in

such a dataset from layer 4 of cerebral cortex (Figure 1B) would

consume about 200,000–500,000 work hours, amounting to $2–

$5 million resource investment, which makes such analysis pro-

hibitive in most settings. It is therefore essential to develop auto-

mated classifiers for large-scale 3D-EM data that have been

stained for all relevant structures, including synaptic vesicles

and post-synaptic densities, and to integrate such automated

classifiers into a reconstruction workflow that provides full-

neuron volume reconstructions at a tolerable investment of

manual labor.

To allow the analysis of large-scale EM data, several software

tools have been developed that either focus on the fully manual

annotation of neurites and synapses (KNOSSOS, Helmstaedter

et al., 2011; TrakEM2, Cardona et al., 2012; CATMAID, Saalfeld

et al., 2009) or provide a combination of automated analysis and

proof-reading capabilities (rhoANA, Kaynig et al., 2015; ilastik,

Sommer et al., 2011). While the fully manual tools cannot relieve
ron 87, 1193–1206, September 23, 2015 ª2015 Elsevier Inc. 1193
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Figure 1. SegEM-Based Connectomic Analysis of Fully Stained 3D-EM Datasets

(A) Dataset boundaries of a 44 mm3 60 mm3 141 mm sized stack acquired by SBEM in mouse retina (dataset ek563; Briggman et al., 2011) extending from the

ganglion cell layer (GCL) via the inner plexiform layer (IPL) to parts of the inner nuclear layer (INL).

(B) 93 mm 3 60 mm 3 93 mm sized SBEM dataset from mouse somatosensory cortex layer 4 (dataset 2012-09-28_ex145_07x2; K.M.B. and M.H., unpublished

data). Orientation with respect to pial surface (Pia) and white matter (WM) is indicated.

(C) Neuropil was ‘‘fully stained’’ contrasting all membranes (retina).

(D) Magnified excerpts from (C) illustrate difficulty of distinguishing plasma membranes from vesicular and mitochondrial membranes. Outlines of plasma

membrane boundaries from human annotation separating intracellular (in) and extracellular (ex) space are indicated in red. Excerpts sized (35 vx)2 each.

(E) Gray value distributions of extra- (blue) and intracellular (green) image voxels are highly overlapping, making automated analysis difficult.

(F) Annotation time estimates per mm neurite path length as a measure of circuit size (see also Figure 6A) shown for all-manual volume annotation, finished large-

scale connectomic reconstructions (1: Helmstaedter et al., 2013; 2: Takemura et al., 2013), methods descriptions (3: RhoANA, Kaynig et al., 2015; 4: RhoANA

applied to cerebral cortex data, Kasthuri et al., 2015; 5: Jones et al., 2015), and SegEM (reconstruction throughput for retina [top marker] and cortex [bottom

marker]). See Supplemental Experimental Procedures for details of calculation.

(G) SegEM flowchart for the reconstruction of neuronal circuits. Blue dashed boxes: steps involvingmanual annotation. Note that neurite reconstruction (step 1) is

by far the most time-consuming step (see also Figure 6A).
the enormous work load of reconstructing even small circuits,

the computer-supported tools require semi-automated manual

annotation or proof reading. The required residual proof-reading

efforts are substantial, amounting to about 30–300 work hours

per mm path length (for a single annotator, Figure 1F). This is

up to 10 times faster than fully manual annotation, but still an

enormous burden for circuit reconstruction for most

laboratories.

If automated classifiers for fully stained 3D-EMdatawere avail-

able that could be directly combined with efficient skeleton

reconstruction, an additional reconstruction efficiency gain of

about 10-fold would be possible, which can propel the field into

a realistic regime of reconstructing local neuronal circuits sized

on the scale of 0.1–1m integratedpath length (Figures1Fand6A).

Here, we report the development of such automatedmachine-

learning-based classifiers and segmentation procedures that
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operate on fully stained synapse-labeled large-scale volume

EMdata.We used convolutional neural network (CNN) classifiers

since they are known to perform well in settings with little prior

algorithmic knowledge about the classification task and since

they profit directly from increased training set size. We applied

semi-automated classifier selection routines that enable classi-

fier training with little prior knowledge in a setting targeted to

large-scale EM data applications.

Our classifiers achieve a volume segmentation quality that

readily provides full-volume reconstructions when combined

with skeleton-annotated neuron reconstructions, at an effective

resource consumption of 4–8 hr/mm path length per annotator.

We exemplify efficient circuit reconstruction for the bipolar cell

inputs to one amacrine cell in an EM dataset from mouse retina,

and local circuit reconstructions of spiny stellate cells and inner-

vating axons in a dataset from mouse somatosensory cortex
.



layer 4. From these example reconstructions, we can predict that

even circuits between hundreds of neurons are reconstructable

using SegEM at resource investments that are realistic in most

laboratories (Figure 6A).

SegEM (Data S8; segem.io) integrates all tools required to

perform circuit analysis in these datasets and the toolset for effi-

ciently analyzing novel 3D-EM datasets of neuronal circuits. In

addition, SegEM comprises all training data and test metrics

(Data S8, segem.io) to establish a large-scale 3D segmentation

challenge for machine learning in connectomics.

In the following, the SegEMworkflow and its application to two

large 3D-EM datasets from mouse retina and cortex is

described. Then, circuit reconstruction examples are presented

for these two datasets, followed by general analysis guidelines

for the application of SegEM to 3D-EM datasets. Finally, seg-

mentation error rates are reported and discussed.

RESULTS

We used SegEM to analyze two large 3D-EM datasets in which

the neuronal tissue had been fully stained to resolve neurites

and synapses. Both datasets were imaged using serial blockface

scanning electron microscopy (SBEM; Denk and Horstmann,

2004): one from mouse retina IPL (ek563; Briggman et al.,

2011; Helmstaedter et al., 2013; voxel size: 12 3 12 3 25 nm3,

dataset size: 443 603 141 mm3; Figure 1A) and one frommouse

S1 neocortex (2012-09-28_ex145_07x2, K.M.B. and M.H., un-

published data; voxel size: 11.24 3 11.24 3 28 nm3, dataset

size: 93 3 60 3 93 mm3; Figure 1B).

SegEM Workflow
The SegEM tools are aimed at replacing the labor-intensive

manual volume segmentation of fully stained 3D-EM data by

an efficient combination of skeleton annotation with automated

volume segmentations (Figure 1F). The first branch of the work-

flow (Figure 1G) is the skeletonizing of axons and dendrites of in-

terest using efficient 3D skeletonization software (such as

KNOSSOS, Helmstaedter et al., 2011; www.knossostool.org,

step 1 in Figure 1G). This is the key step that consumes manual

labor. The consumption is about 4–8 hr per mm neurite path

length for a single skeleton annotator, thus 25- to 100-fold faster

than fully manual volume annotation (Helmstaedter et al., 2011;

see Figure 1F).

To make use of this skeletonized data for volume segmenta-

tion, contact detection, and further circuit analysis, the second

branch of the SegEM workflow is required (steps 2–5 in Fig-

ure 1G). First, small example volumes need to be manually

labeled for training the automated classifiers (step 2 in Figure 1G).

This step consumes about 1,000–2,000 work hours, but only

once per dataset, which is only a fraction of the work hour invest-

ment required for neurite skeletonization in most settings. Next,

the automated image classifiers have to be trained (step 3 in Fig-

ure 1G). Then, the trained classifier is applied to the 3D-EM im-

age data, followed by an automated segmentation step (steps

4 and 5 in Figure 1G). The result of these SegEM steps is a piece-

wise volume segmentation, which is then combined with the

skeleton reconstructions to yield full-volume reconstructions of

neurons.
Neu
These full-neuron reconstructions are then fed into the

SegEM-contact detection routines (step 7 in Figure 1G), which

output contact area matrices and pointers to potential synapse

locations. These can be used to finally validate synapses in the

circuit of interest (step 8 in Figure 1G).

The SegEM workflow is rather modular: for example, the clas-

sifier training (steps 2 and 3 in Figure 1G) can be omitted if an

existing classifier is to be applied to the data (for example, the

classifiers developed here can be directly applied to novel 3D-

EM datasets, see Data S2).

The logic of the SegEM workflow is described in the following

as it was applied to the two large example datasets from retina

(Figure 1A) and cortex (Figure 1B). A detailed step-by-step in-

struction for the application of SegEM can be found in the Sup-

plemental Experimental Procedures.

Training Data
Machine-learning-based image analysis requires substantial

amounts of labeled training data. For the retina dataset, we

used manually segmented image volumes in the surroundings

of ribbon synapses, which consisted of bipolar, amacrine, and

ganglion cell neurites (Figure S1A) as training data. These anno-

tations had been used in a previous study for the calibration of

synapse probability based on neurite-to-neurite contact area

(Helmstaedter et al., 2013). The 215 manual segmentations

were generated by contouring of neurites by 33 trained under-

graduate students using a custom-written software (KLEE, im-

plemented in MATLAB; other available tools are, for example,

ilastik, Sommer et al., 2011; CATMAID, Saalfeld et al., 2009;

VAST, Kasthuri et al., 2015) and consumed a total of about

1,500 hr annotation time (thus, about $15,000 salary expense,

which is on the scale of investments in chemicals for 3D-EM pro-

jects). This volume segmentation was split into a training and test

set (�5 3 108 and �1 3 106 voxels, respectively).

For the cortex dataset, we volume-annotated locally dense

data cubes of size (100 voxel)3. We found training set size to

be of critical importance. We initially trained with 10 of such vol-

umes sampled evenly from the entire dataset (thus, about 107

training samples). However, classification results were much

poorer than when training on the final 279 volumes (2.8 3 108

samples). Thus, the factor 30 in annotation cost and effort was

likely required (total of 2,000 hr manual labeling time).

Classifier Training
We trained convolutional neural network (CNN) classifiers to

convert the raw 3D-EM image data into 3D maps of intracellular

continuity between face-to-face adjacent voxels (one map for

each cardinal direction; Figures S1A–S1C; Jain et al., 2010b;

Turaga et al., 2010). For the cortex data, we found it sufficient

to train the CNNs to output a single 3D map, thus representing

the probability of each image voxel to be intra- or extracellular.

Training the CNN to output one map is the default setting in

SegEM but may be switched to three output maps for lower-res-

olution and lower-contrast image datasets.

To find optimal learning rates and architectural parameters for

our CNN training, we implemented a simple hyperparameter

search. This relieved us of the need to hand-design training pa-

rameters, and it made direct use of the availability of GPU
ron 87, 1193–1206, September 23, 2015 ª2015 Elsevier Inc. 1195
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compute clusters without the need to explicitly parallelize the

training computations. Instead, we used a GPU cluster for paral-

lel training of different CNN architectures. This was essential for

the success of the classifiers. While more sophisticated hyper-

parameter search algorithms have been proposed (Bergstra

et al., 2013; Snoek et al., 2012), the simple evolutionary

approach as described in the following was robust and success-

ful and was aimed at making CNN training for connectomics

widely applicable. When applying SegEM to a novel 3D-EM da-

taset, we recommend to first test our best-performing classifiers

(Data S2) on the novel dataset. This is especially recommended if

the high-resolution ultrastructure is comparable to cortex tissue,

such as is the case for hippocampus, thalamus, and many other

subcortical regions, and the imaging resolution is similar. Then,

SegEM can be used to refine the classifier by training it using

the best training parameters from our search (reported in

Table 1). For novel datasets that have different ultrastructure

and geometry, we recommend using the entire SegEM hyper-

parameter search procedure as described in the following.

The cost function for CNN classifier training was squared

voxel-based error between the adjacency maps and the graded

classifier output; the cost function wasmasked for unlabeled im-

age regions. While this voxel-based metric is known to be

conceptually inferior to segmentation-based metrics, we prof-

ited from its more efficient implementation yielding training times

on the scale of days, not months (see below). Then we randomly

selected training batches out of that masked volume. These

training batches had to fulfil the criteria that at least 1/3 of voxels

in the batch were labeled and that at least 1/3 of these labeled

voxels were from each of the two label classes. These criteria

were necessary to reduce training time and to avoid activity

map saturation (such saturation could occur because the two la-

bel classes were highly unbalanced in regions containing large

dendrites or somata).

For classifier training, two modifications of the training data

proved crucial for classifier convergence and performance.

(1) Since the detection of neurite borders is essential for avoiding

incorrect neurite mergers, we reduced the bias toward intracel-

lular regions by enlarging neurite-to-neurite walls in the labeled

data. This was implemented by eroding the volume objects in

the training data with a spherical structuring element of size 33

voxel, and thus a broadening of neurite-to-neurite walls by about

20–80 nm (Figures S1E and S1F). (2) We excluded those training

volumes that yielded substantial classification performance de-

creases (examples in Figure S1J; 11 of 215 training volumes

were excluded, Table S1; see Supplemental Experimental Pro-

cedures for a quantitative guideline on which training data to

exclude). This is an unusual approach in machine learning, but

proved critical for classifier convergence. The training volumes

that were excluded mostly contained significant errors in the

manual annotations—caused by insufficient annotator attention

or artifacts in the image data. We recommend this training data

co-optimization step in settings where intense curation of

training data is not feasible because it would consume substan-

tial additional annotation time.

The CNNs were implemented on a GPU compute cluster,

which accelerated the parallel screening of CNN architectures.

CNN architectures and training procedures comprised a total
1196 Neuron 87, 1193–1206, September 23, 2015 ª2015 Elsevier Inc
of 17 varied parameters (most relevant: number of hidden

layers, number of feature maps per hidden layer, filter size,

learning rates for weights and biases and their respective

learning rate decay, and batch size; see Table 1 and Fig-

ure S1D). Exhaustive parameter screening was not possible,

since training convergence took at least about 2 days on one

GPU card. We therefore first performed a qualitative manual

network architecture selection. After an initial screening of

about 200 network parameter sets, we started a semi-auto-

mated network selection procedure (Figures 2A–2C; shown

for the retina dataset) with the best parameter set from the

initial broad search (these parameters ranges are reported in

Table 1; see Figure S2B for typical examples of rejected clas-

sifier outputs).

Whenwe applied SegEM to the cortex dataset, wemade a few

improvements to the classifier search procedure, which we

recommend for applying SegEM to novel datasets. First, we

made use of a larger GPU cluster (28 GPUs), but CNNs were

trained for only 1 day per iteration (Figure S2F). Then, the best

half of the CNNs were selected based on averaged training error

over themost recent 200 batch iterations, and the parameters for

these were varied again (see Table 1 for best-performing

network parameters and Supplemental Experimental Proce-

dures for details). This procedure was iterated.

When applying the SegEM classifier search to a novel EM da-

taset, we recommend first trying to use the best-performing

SegEM classifiers directly. When we applied the retina-trained

classifier to cortex data, we obtained rather poor results (Figures

S2D and S2E) and therefore applied the entire SegEM parameter

search to the cortex dataset again. However, for datasets

resembling cortex data or retina data in ultrastructure, the trans-

fer of classifiers between datasets may be feasible.

After testing the existing classifiers on novel datasets, we

recommend then performing SegEM hyperparameter search

by initializing with our most successful hyperparameters (Ta-

ble 1). This can provide a successful classifier within only about

10 such search iterations.

After classifier optimization, the best 2–5 output networks

were used as input to the segmentation optimization (see below).

Automated Volume Segmentation
The three adjacency maps obtained as classifier output for the

retina dataset or the one output map obtained for the cortex da-

taset were then used in awatershed-based segmentation proce-

dure to generate a space-filling volume segmentation (Figure 3).

The segmentation procedure consisted of the following steps

(Figure 3). (1) Morphological opening and closing by reconstruc-

tion using a spherical structuring element of radius rse. This was

intended to suppress mergers in the segmentation by removing

small connecting bridges between otherwise unconnected im-

age regions. This step provided improvements for the retina,

but not the cortex data (see Table 2). (2) Generation of markers

for watershed using a threshold or local minimum operation on

the classifier output (parameters: qmg and qhm), followed by con-

nected components. In contrast to the retina classifier, for

the cortex data, the hmin operation for marker generation per-

formed better than thresholding. (3) Exclude markers smaller

than qms voxels. (4) Marker-based watershed on the result of
.



Table 1. Search Ranges and Best Parameters for SegEM-CNN Training

Retina Initial

Screening

(ranges)

Retina CNN Selection

Iteration 1 Retina CNN Selection Iteration 2 Retina CNN Selection Iteration 3 Cortex Automated CNN Selection

Min Max

CNN1,j

(ranges) CNN1,1

CNN2,j

(ranges) CNN2,1 CNN2,2

CNN3,j

(ranges) CNN3,1

CNN3,2

(best class)

CNN

(ranges) 20130516T2040408,3 20131012T23421941,3

nHL 1 8 4 4 4 4 4 4 4 4 3–4 4 4

nfm 5 30 10 10 10 10 10 10 10 10 [15,15,10,10],

[10,10,10,10],

[10 10 10]

[10,10,10,10] [10,10,10,10]

nom 1 3 3 3 3 3 3 3 3 3 1 1 1

SFx/y, SFz 5,5–20,10a 8,4 8,4 8,4 8,4 8,4 8,4 8,4 8,4 5,3–21,11 11,5 11,5

db 1 5 2 2 2 2 2 2 2 2 4 10 4+

SBxy,z 1,1–100,50b 12,6 12,6 12,6 12,6 12,6 4,2–100,50c 12,6 4,2 100,100 100,100 100,100

hw0 10�8 103 10�5–10�1 10�4 10�6–10�3 10�6 10�6 10�7–1 10�7 10�6 10�7–10-13 – –

hb0 10�6 100 10-100 10 0.01-10 0.1 10 0.01-1 0.1 0.1 10�7–10-13 – –

tw, tb 107–93 1012 (l,e) 5 3 108(l,e) 5 3 108(e) 5 3 108(l) 5 3 108(l) 5 3 108(l) 107–5 3 108(l) 5 3 108(l) 5 3 108(l) (l) – –

Nit,cum

(3106)

5*10�4 3.7665 1.4355–

1.75

1.7475 2.806–

2.8095

2.8075 2.8085 2.8295–

3.3855

3.2055 3.3855 3.5–7 3 10�4 / it. – –

Network CNN3,2 was best performing on retina data and used for Figures 3 and 4. Network 20130516T2040408,3 was best performing on cortex data and used for Figures 3 and 5. nHL: number of

hidden layers; nfm: number of feature maps per hidden layer; nom: number of output maps; SFx/y, SFz: filter size in x/y and z direction in vx, respectively; db: mask border size in vx; SBxy,z: batch size

in x/y and z direction, respectively; hb0: weight learning rate initialization; hb0: bias learning rate initialization; tw, tb: decay constants for weight and bias learning rates; Nit,cum: cumulative number

of training iterations (number of batch learning iterations). l,e: linear and exponential learning rate decay, respectively.
a8,4; 20,10; 12,6; 10,5; 5,5; 7,7.
b{[5,5,5], [10,10,10], [2,2,2], [20,20,20], [1,1,1], [30,30,30], [12,12,6], [8,8,4], [4,4,2], [20,20,10], [40,40,20], [100,100,50]}.
c{[12,12,6],[40 40 20],[20 20 10],[4 4 2],[100,100,50]}.
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Figure 2. Classifier Training and Semi-auto-

mated CNN Hyperparameter Selection Pro-

cedure

(A) Sketch of CNN variation and selection proce-

dure (Sel.it: selection iteration). See Table 1 for

CNN and training parameters.

(B) Example classification results (average affinity

maps) for classifiers developed via procedures in

(A). Arrows indicate typical classification chal-

lenges and their improvement over selection iter-

ations (mitochondria close to plasma membrane,

broad arrow; intracellular clustered large mito-

chondria, narrow arrow; intracellular staining pre-

cipitate close to plasma membrane and proximity

to small diameter neurites, double arrow).

(C) Normalized test error development during se-

lection procedure shown in (A). Colors match

CNNs in (A) and (B). Error was calculated every 500

batch iterations and averaged over 101 of those

errors using a sliding window. Arrow: initial error

after random initialization of CNN.
segmentation step 1 (see Supplemental Experimental Proce-

dures for details and Data S8 for all required routines).

Thus, the segmentation procedure had a total of three relevant

parameters ([rse, qmg, qms] and [rse, qhm, qms], respectively; Table

2). We optimized these segmentation parameters by an iterated

parameter grid search (see Table 2 for parameter ranges and

best-performing parameters). Segmentations were judged by

the average inter-error distance (i.e., the combined split-merger

inter-error distance, see below), the average segmentation ob-

ject size, merger suppression, and avoidance of longitudinal

neurite splits (see Experimental Procedures for details).

Combining Skeletons and Automated Segmentations
We then used our automated volume segmentations for whole-

neuron reconstruction (step 6 in Figure 1F). We skeletonized

the axons of 276 bipolar cells and the dendritic tree of one ama-

crine cell from the mouse retina dataset ek563 (Figure 4). 37 re-

constructions were identified to be type 5 cone bipolar cell axons

based on their lamination in the inner plexiform layer (dendrites

could not be reconstructed since ek563 only spanned from the

GCL to the beginning of the INL, see Figure 1A; each axon was

traced by one experienced student). Of these skeletons, 10

were randomly chosen (Figures 4A and 4B), proofread by one

additional tracer, and all volume segmentation objects overlap-

ping with at least one skeleton node were collected (inset in Fig-

ure 1F) for each bipolar cell axon. Skeletons were traced at an

average consumption of 7.2 ± 4.1 hr/mm, which is similar to

the speed achieved in the surface-enhanced contrast sample

from mouse retina (e2006; Helmstaedter et al., 2011, 2013; see

Figure 1F for comparisons).

The resulting whole-cell volume reconstructions (Figures 4A

and 4B) contained 3 obvious merge errors in 10 bipolar cells
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with a total path length of 4.13 mm, i.e.,

1.38 mm distance between mergers (see

below for a more detailed quantification

of error rates). This was comparable to
the error estimates in the retinal circuit reconstruction based

on special cell-membrane enhanced staining.

Automated Contact Detection and Synaptic Circuits
in Mouse Retina
We then used the volume reconstructions of type 5, 6, and 7 bi-

polar cells (CBCs 5, 6, 7; n = 37, 37, 22), rod bipolar cells (RBCs,

n = 117), yet unclassified cells (n = 23), and a peculiar amacrine

cell with wide-field ramifications (Figure 4C) to measure the syn-

aptic bipolar-cell innervation profile of this amacrine cell. A total

of 243 contacts between these neurons were automatically de-

tected (step 6 in Figure 1F). Since we had previously shown

that contact area predicts synaptic contact in bipolar-to-gan-

glion cell and amacrine cell synapses in mouse retina (Helm-

staedter et al., 2013), we only validated three of these automat-

ically detected contacts (of which two were ribbon synapses;

Figure 4D). Synapse validation was performed using either

KNOSSOS (Helmstaedter et al., 2011; knossostool.org) or web-

KNOSSOS (K.M.B. M.B., T. Bocklisch, and M.H., unpublished

data; webknossos.brain.mpg.de); SegEM outputs skeleton files

that point directly to the contact locations of interest, thus facil-

itating synapse validation for the human annotator (step 7 in Fig-

ure 1F). Synapse validation consumed about 3–5 min inspection

time per contact. Figures 4C and 4D show the resulting innerva-

tion pattern of the investigated amacrine cell, providing evidence

for a spatially segregated CBC innervation (Figure 4D; total

annotation time 280 hr: 1 hr for each bipolar cell axon, 3 hr for

AC, and 3 min per inspected synapse).

Synaptic Circuits in Cortical Layer 4
To perform local circuit analysis in cortex, we skeleton-recon-

structed the dendrites of 4 spiny stellate neurons (52 hr of

http://knossostool.org
http://webknossos.brain.mpg.de
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for Retina and Cortex Data

(A) Raw data forward-passed through a CNN

classifier (retina; classifier CNN3,2, see Table 1)

yielding three voxel-to-voxel affinity maps (only

x-output [ox] shown, see Figures S1A and S1C),

followed by image inversion, morphological

reconstruction with radial structuring element of

radius rse (shown is result for rse = 1, see Table 2),

map binarization at threshold qmg (shown qmg =

0.3), application of connected component (c.c.)

segmentation (26-surround) for marker generation,

exclusion of markers with volume < qms voxels

(qms = 150 shown), and marker-based watershed

(w.s.) on inverted morphologically reconstructed

affinity maps using the shown markers.

(B) Classification and segmentation for cortex

dataset; steps are as for retina data (A) except

for local minimum operation with minimal depth

parameter qhm = 0.39 (rse = 0, qms = 50). Note

that maps were inverted before watershed

marker generation but are shown in non-inverted

form here. Image sizes: (6.2 mm)2 (A) and

(5.8 mm)2 (B).
tracing), combined them with the SegEM-generated volume

segmentations (Figures 5A and 5B), and then identified the

axons providing synaptic input to three directly adjacent spines

on one of the neurons’ dendrites (cell 1, primary dendrite 1; Fig-

ure 5C). We then reconstructed the three corresponding pre-

synaptic axons and used SegEM to compute the local high-res-

olution contact matrix (Figure 5D) reporting the size of all

contacts between these three axons and all of the spiny neuron

dendrites (total of 33 contacts). For neuron-to-neuron contacts

in cortex, a direct prediction of the existence of a chemical

synapse based on the size of an individual neuron-to-neuron

contact is not possible. We therefore inspected each of the de-

tected contacts and determined the local synaptic connectome

(Figure 5D, bottom; 8 of 33 contacts were confirmed to be syn-

aptic; examples in Figure 5E). Synapses were validated by vi-

sual inspection using direct links to contact locations in our

web-based annotation tool, webKNOSSOS (K.M.B., M.B., T.

Bocklisch, and M.H., unpublished data; webknossos.brain.

mpg.de), which consumed less than 1 min annotation time
Neuron 87, 1193–1206, Sep
per suspected synaptic contact. The re-

sulting local high-resolution synaptic

connectome (Figure 5D, bottom) thus

required a total manual annotation effort

of 53 hr; skeleton tracing was possible

at only 3.7 hr per mm path length, which

we attribute to the better data quality in

our cortex dataset and the skill level of

the annotators. We finally searched all

pairs of axons and dendrites for addi-

tional synaptic contacts to estimate the

rate of missed synapses by SegEM. We

found no additional synaptic contact (0

missed contacts for 33 detected con-
tacts), which provides an additional validation of the quality of

the SegEM volume segmentations.

Circuit Reconstruction Time Estimates
How realistic are synaptic circuit reconstructions at the

measured throughput using SegEM, based on the small

example circuits reported for the retina and cortex? Take, for

example, the innervation of excitatory neurons in cortical layer

4 by thalamocortical axons (Figure 6A). While single synaptic

innervations have been studied, the pattern of local target

selectivity (or the lack thereof) of the thalamocortical innerva-

tion is not known. Therefore, a study to reconstruct the connec-

tome between say 10 thalamocortical axons and 30 postsyn-

aptic L4 neurons would be highly relevant. What investment

would such a circuit reconstruction require using SegEM?

Each of the involved neurites has a couple of millimeters of

path length; let’s assume that a redundancy of 4 tracings per

dendrite and 2 per axon is about sufficient (tracing redundancy

can be scaled to the required circuit accuracy, which depends
tember 23, 2015 ª2015 Elsevier Inc. 1199
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Table 2. Best-Performing Segmentation Parameters for Retina and Cortex Segmentations

Segmentation Parameters Retinaa Segmentation Parameters Cortexb

Parameter ranges

for split-merger

metrics (Figure 7F)

Optimum

segmentation

(Figure 7F)

qn = 1;2

Whole-cell

segmentations

(Figure 4)

All else

shown

Parameter ranges

for split-merger

metrics (Figure 7F)

Optimum

segmentation

(Figure 7F)

qn = 1;2

Whole-cell

segmentations

(Figure 5)

All else

shown

rse {0,1} 1; 1 1 1 0 0; 0 0 0

qmg {0.2,0.21,..0.5} 0.5; 0.38 0.31 0.3 – – – –

qms {0,20,40,60,

100,150}

100; 0 20 150 {0,50,100} 50; 0 10 50

qhm – – – – {0.02,0.04,.. 0.7} 0.58; 0.04 0.25 0.39

IED (mm)c – 3.85; 7.91 2.20; 7.04 2.21; 6.24 – 1.58; 4.93 0.93; 4.48 1.26; 3.86

Split (mm)c – 7.71; 9.76 2.37; 7.38 2.56; 6.65 – 2.89; 5.03 0.96; 4.56 1.46; 4.47

Merge (mm)c – 7.71; 41.73 30.26; 151.28 16.36; 110.02 – 3.48; 214.52 28.41; 241.52 9.29; 28.41

rse = radius of spherical structuring element for morphological operations; qmg: threshold used for marker generation; qhm: depth parameter of H-

Minima operation; qms: voxel threshold for watershed marker size. IED: average inter-error distance; split: average distance between splits; merge:

average distance between mergers (see Experimental Procedures for calculation).
aUsing CNN3,2 (see Table 1).
bUsing CNN 20130516T2040408,3 (Table 1).
cReported for node overlap thresholds qn = {1;2}, see Figure 7F.
on the type of circuit that is being studied; see Helmstaedter

et al., 2011, 2013), then we end up with about 3,300 work hours

for neurite tracing. If distributed between, for example, 15 un-

dergraduate students, who each work about 40 hr per month,

such an analysis would take about 5.5 months and consume
Figure 4. Connectomic Analysis in Fully Stained Retina Data

(A) Volume reconstruction of 10 randomly selected cone bipolar cell type 5 (CBC5)

the computer-generated segmentation objects (classifier CNN3,2, rse = 1, qmg =

annotations. Tracing time was about 1 hr per bipolar cell axon. Arrows point to ob

inter-merger distance � = 1.38 mm). Gray spheres indicate somata.

(B) Same reconstruction as in (A) viewed in the IPL plane.

(C) Automated contact detection of CBC inputs to a displaced amacrine cell (inse

shown as spheres; sphere surface proportional to contact size. Since this dataset

and directionality of synapses confirmed (Rib. syn.: ribbon synapse CBC/AC c

CBCs were annotated twice, AC once by an expert annotator. Annotation consu

(D) Same reconstruction as in (C) viewed in the IPL plane. All images show the w
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about $33,000 (assuming about $10 per hour salary expenses).

Then, the about 1,000 contacts between the axons and den-

drites need to be inspected, which would require about 15–

20 work hours, thus only a fraction of the neurite reconstruction

effort. Together, such a project is realistic in resource and work
axons in dataset ek563 frommouse retina (see Figure 1) obtained by relabeling

0.31, qms = 20, see Tables 1 and 2) according to human-generated skeleton

vious merge errors (3 obvious errors, total skeleton path length: 4.13 mm, i.e.,

ts in C). Contacts with CBCs of type 5–7, RBCs, and unclassified neurons are

was fully stained, automated contacts can be visually inspected and existence

onfirmed; No syn: accidental contact without evidence for synaptic contact).

mption: 7.2 hr/mm path length for a single annotator.

hole dataset with dimensions 141 mm (z), 44 mm (x), 60 mm (y).

.
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Figure 5. Connectomic Analysis in Fully

Stained Cortex Data

(A) Volume reconstruction of 4 spiny neurons (or-

ange, gray, green, yellow, respectively) by com-

bination of skeleton tracing with SegEM classifier

(see Figure 4, CNN 20130516T2040408,3; see

Tables 1 and 2 for classification and segmentation

parameters).

(B) Same reconstruction as in (A) viewed from a

different angle.

(C) The presynaptic axons from three neighboring

spines of one neuron (orange, C) were also volume

reconstructed (black, blue, red axon). Arrows in

(A), (B), and (C) point to all detected contacts be-

tween these axons and spiny neurons (* and #: 5

and 6 contacts, respectively).

(D)The local connectomebetween the3axons (red,

black, blue, respectively) and the primary dendrites

(d1–d4) and somata (s) of the 4 spiny neurons. Top

panel shows the total size of contact areas Ac (see

magenta arrows in A–C). Bottom panel shows the

result of visual inspection of each contact to

determine the presence of chemical synapses.

(E) Examples of synapses and one accidental

contact (bottom right). Annotation consumption:

3.7 hr/mm path length for a single annotator.
hour consumption and would provide unprecedented circuit

data that currently cannot be obtained with other techniques.

Notably, without SegEM, this reconstruction would have

consumed about 10 times more work hours and resources,

which would make it not feasible in most settings.

Similarly, one can project the required investments for other

circuit reconstructions of similar or larger scale in cortex and

retina (for example, the connectome between 300 bipolar and

300 small-field amacrine cells would consume about 6,500 hr to-

tal; see Supplemental Experimental Procedures and Figure 6A

for details of the calculation and further examples).

Analysis Guideline for Novel Large-Volume EMDatasets
The analysis steps needed to perform circuit reconstruction in

large-scale 3D-EM datasets (Figure 6B) can thus be summarized

as a methodological guideline based on the SegEM analysis

package. As a prototypical example, assume a SBEM dataset

from mouse barrel cortex covering one layer 4 barrel from one

cortical column at the required resolution (450 mm3 volume,

12 3 12 3 25 nm3 voxel size, i.e., 23 TB image data, about

60 days of experiment for 16,000 successive image layers).

Manual analysis for training label generation can be done in par-

allel to data acquisition (Figure 6B), such that the CNN selection

procedures are finished when data acquisition is. Dataset classi-

fication and segmentation will then approximately equal the im-

aging time (assuming a compute cluster of �60 GPUs and
Neuron 87, 1193–1206, Sep
�75 CPUs). Annotation investment (for

training data acquisition) would be about

2,000 work hours distributed to about 30

annotators, if de novo training is required.

This step can be omitted if the existing

SegEM classifiers are already successful
without additional parameter search (see above). Circuit recon-

struction by skeleton reconstruction is then possible at a con-

sumption of about 4–8 hr/mm path length. Within 2 months (as

proposed in Figure 6B), a team of 30 annotators working at

40 hr/month can provide 2,400 work hours—sufficient for recon-

structing the circuits between 30 TC axons and 30 spiny stellate

neurons, or 100 bipolar cells and 30 amacrine cells (Figure 6A;

80–180mmcircuit size) atmoderate cost.Of course, this analysis

phase can be extended for larger circuits. All processing code

required for such an analysis setup is contained in SegEM

(segem.io, Data S8).

Segmentation Metrics
The main contribution of SegEM is to enable efficient circuit

reconstruction in fully stained 3D-EM datasets by combination

of skeleton reconstructions with automated volume segmenta-

tions. For this, it was crucial to make 3D-EM classifiers suffi-

ciently reliable such that they can be combined into full-neuron

reconstructions by assembly along the center line of neurites

as shown above.

In addition to this concrete application, it was however desir-

able to compare the SegEM volume segmentations to the perfor-

mance of other segmentation benchmarks (Figure 7). For this, we

computed voxel, rand, and warping error using the routines

made available in the ISBI EM challenge (see Supplemental

Experimental Procedures; Figure 7H). SegEM results according
tember 23, 2015 ª2015 Elsevier Inc. 1201
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Figure 6. SegEM Circuit Reconstruction Time Estimates

(A) Projected circuit reconstruction cost measured in required work hour investment for two example circuits. Top left, circuit within layer 4 of cerebral cortex

comprising thalamocortical axons (TC) and postsynaptic spiny neurons (L4 ss). Reconstructing a circuit of 30 TC axons and 30 spiny neurons would consume

about 2,160 work hours for neurite tracing (at 2- to 4-fold tracing redundancy) and about 50 hr for synapse validation. Even a circuit of 100 axons and 100

dendrites is realistic (total effort: 7,700 work hours, i.e., less than $80,000 salary investment). Bottom right, examples for circuits between bipolar neurons and

amacrine cells in mouse retina. Note that for novel dataset, an additional volume labeling investment of 1,500–2,000 hr may be required. See Supplemental

Experimental Procedures for details of calculations.

(B) SegEManalysis procedure for large-scale 3D-EMdatasets, exemplified by the analysis timeline for a SBEMdataset frommouse somatosensory cortex, where

a volume of (450 mm)3 contains layer 4 of one cortical column and the required voxel size is about (12 3 12 3 25) nm3 (dataset size �25 TB). All numbers are

approximate. SBEM: SBEM imaging (60 days) assumes an effective imaging speed of �5 3 106 vx/s (including cutting, motor movements, etc.). Vol.: volume

training data annotation for CNN training;�200 dense volume labelings of (100 vx)3 consuming�1,600 work hours (wh) distributed between 30–40 students over

2 weeks. Skel.: skeleton training data annotation for segmentation optimization; 5 students, �300 work hours (wh) over 2 weeks. CNN train.: classifier training/

selection procedure (see Figure 4) over approximately 28 days (28 selection iterations as in Figure 4B). Segm. optim.: segmentation optimization (Table 2) using

skeleton training data; about 2–5 days of computation. Alignment: alignment of SBEM images and conversion to Knossos data format (3D). Preproc.: dataset

preprocessing (after entire dataset acquired); gray scale equalization; blood vessel masking, nucleus masking, potential correction of tiling effects (about 7 days

of computation). Classification: dataset classification (forward pass of best CNN from selection procedure): 77 days on 56-GPU cluster. Segm.: local dataset

segmentation in (128 vx)3 cubes with 10 vx margin on all sides on a 70-80-CPU cluster. Skeleton Circ. Rec: skeleton-based circuit reconstruction (at 4–8 hr per

mm path length). Syn. Val.: synapse validation (at about 0.5–1 min per contact).
to the ISBI challenge metrics were among the best with respect

to the warping error (aimed at directly optimizing topology of

neurites) and rand error (Figure 7I). This is notable since the im-

age data used in our (larger-volume) SegEM challenge was at

resolution about 10-fold lower than that in the ISBI small-volume

challenge (see Figure 7H, left panels).

However, such comparisons should be treated with caution,

since the ISBI challenge is evaluated only on 2D-EM data slices

(Figure 7H), and voxel based metrics can be highly biased by

the concrete shape and size of local objects contained in the

test volume.

We therefore used an additional metric to measure SegEM

segmentation error rates: we compared the volume segmenta-

tions to manually annotated skeleton (center-line) neurite recon-

structions (Figures 7A–7G). This metric (skeleton-based split-

merger metric; Figures 7C–7F) evaluates neurite continuity along

the main axis of the neurites. Since the center line path length of

neurons is on the scale of millimeters, such a metric therefore

evaluates the most challenging aspect of neurite reconstruc-

tions: volume pieces as small as 50 nm in diameter, but at milli-

meters path distance, have to be correctly assigned to each

other. The skeleton-based split-merger metric measures the

rate of splits, i.e., breaks in the volume segmentation along the

neurite center line axis (Figure 7E), and the rate of mergers,

i.e., volume segmentation objects that link together two separate
1202 Neuron 87, 1193–1206, September 23, 2015 ª2015 Elsevier Inc
neurite skeletons (Figure 7D; see Experimental Procedures for

details of the calculation or evaluateSeg.m in Data S8 or SegEM

package on github). Both measures are expressed as their in-

verse, i.e., the average distance between splits ds and the

average distance between mergers dm.

Figure 7F shows the split-merger distances in the retina data-

set for 372 combinations of segmentation parameters using

CNN3,2 and for 99 combinations of segmentation parameters

using CNN 20130516T2040408,3 for cortex. Error distances are

reported for two node thresholds qn indicating the minimum

number of skeleton nodes that had to overlap with a segmenta-

tion object to be considered amatch; higher values of qn result in

more resistance to noise from the imprecise manual placement

of skeleton nodes.

The optimum inter-error distance 1/(1/ ds +1/ dm) for qn = 1,2

was 3.9 mm, 7.9 mm, respectively (retina), and 1.6 mm, 4.9 mm

(cortex; see Table 2 for the corresponding optimal segmentation

parameter sets). This optimum inter-error distance assumes

splits and mergers in the automated segmentation to be of

equally detrimental effect.

However, the key goal of our automated segmentation was

to enable the efficient combination of skeleton reconstructions

and volume segmentations for whole-neuron reconstructions.

For this application, the optimal segmentation is one with

maximal merger distances under the constraint that objects
.
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Figure 7. Segmentation Metrics and SegEM

3D Segmentation Challenge for Connec-

tomics

(A–C) Quantification of segmentation accuracy by

comparison of automated volume segmentation U

(shown in B, classifier CNN3,2, see Table 2; rse = 1,

qmg = 0.3, qms = 150) with dense human-labeled

skeleton annotation (A) yields overlap matrix AU
ak

between skeleton objects a and segmentation

objects k, which is binarized at node-overlap

threshold Qn (C, see Experimental Procedures).

Row sums exceeding 1 integrate to total split

count; column sums exceeding 1 integrate to total

merger count.

(D and E) Examples of mergers (D) and splits (E)

(see Data S4 and S5 for complete gallery).

(F) Skeleton-based split-merger metric: average

distance between splits (ds) and mergers (dm) for

372 segmentations obtained from varying the

segmentation parameters as shown in Figure 2D

for retina (magenta) and 99 segmentations cortex

(cyan). Error distances are reported for skeleton-

node-to-segmentation object overlap thresholds

Qn = 1,2 (the larger threshold is less sensitive to

node placement noise; see Experimental Pro-

cedures). Squares: optimal inter-error distance for

Qn = 1,2 (3.85 mm, 7.91 mm for retina and 1.58,

4.93 mm for cortex, respectively). Dashed lines:

segmentation used in Figures 4 (retina, purple line)

and 5 (cortex, blue line); see also (G); solid lines:

segmentation used in all other figures (lines con-

nect split-merger point for Qn = 1,2.

(G) Cortex axons and overlapping segmentation

objects from segmentation in (F) (blue dashed line)

to illustrate average object size (2 axons from

Figure 5).

(H) Comparison of image data from ISBI 2012 2D-

EM challenge and SegEM 3D-EM challenge. Note

higher resolution of data in xy (ISBI) versus problematic resolution and alignment in third dimension. Shown data are the entire training dataset for ISBI challenge.

SegEM challenge comprises 279 of the volumes shown in (H).

(I) Comparison of all results submitted to ISBI 2012 2D-EM segmentation challenge as reported on http://brainiac2.mit.edu/isbi_challenge/ (black) and SegEM

performance on test set of 34 (100 voxel)3 regions from cortex dataset (blue) evaluated using the ISBI metrics (see Supplemental Experimental Procedures for

details of calculation). Scale bars, 1 mm in (D) and (E); 10 mm in (G).
are rarely split longitudinally (example of longitudinal split: Fig-

ure S2C). Under this constraint, we find at node threshold qn =

2 an inter-merger distance of 151.3 mm and inter-split distance

of 7.4 mm (Figure 7F, purple dashed line) to be most useful for

whole-cell reconstruction in retina. For cortex, the segmenta-

tion used for whole-cell reconstruction had an inter-merger dis-

tance of 241.5 mm and inter-split distance of 4.6 mm (Figure 7F,

blue dashed line; see Figure 7G for an example skeleton-seg-

mentation overlay of a cortical axon using this segmentation

setting).

Thus, in addition to enabling high-throughput circuit recon-

struction, SegEM provides all training data and test metrics for

large, truly 3D-EM datasets. The supplied training data comprise

987 mm3 of labeled data, thus about 100 times more than that

in the available EM challenges. Importantly, these data are

sampled from many locations within a large 3D-EM dataset,

providing properly generalizing classifiers. With this, SegEM

also becomes a next-generation benchmark for machine

learning in connectomics.
Neu
DISCUSSION

Wehave developed SegEM, a semi-automated volume segmen-

tation toolset for circuit reconstruction in fully stained 3D-EM im-

age data (Figure 6). We applied our toolset to neuronal tissue

from mouse retina and cerebral cortex. The exemplary synaptic

innervation analyses (Figures 4 and 5) illustrate that SegEM re-

solves the tradeoff between synapse detectability in fully stained

EM data and the reconstruction efficiency gain obtained by

crowd-sourced skeleton reconstructions, which is required for

dense circuit reconstruction in large-scale EM data.

We have proven the applicability to two types of neuronal

tissue data even though the voxel-based classifiers do not

generalize well between volume datasets from different neuronal

tissues (Figures S2D and S2E). This may point to relevant local

geometrical differences between peripheral and central nervous

tissue.

While throughput of image analysis is still the major bottleneck

in high-resolution connectomics, SegEM has made a substantial
ron 87, 1193–1206, September 23, 2015 ª2015 Elsevier Inc. 1203
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difference in our own circuit analyses, reducing the investment

per circuit analysis project by greater than 10-fold.

Further improvements in automated segmentation and hu-

man-machine interaction will be required for the most ambi-

tious projects, such as whole-brain circuit reconstruction in

the farther future, but SegEM has the ambition to make high-

resolution connectomics a ready-to-use technique for many

laboratories today (Figures 4, 5, and 6) and to furthermore pro-

vide a benchmark for fully 3D-EM-based connectomic data

analysis (Figure 7).

EXPERIMENTAL PROCEDURES

For the application of SegEM, please follow the detailed instructions in the

Supplemental Experimental Procedures.

3D-EM Image Datasets

The ‘‘retina’’ EM dataset (designated ek563, from Briggman et al., 2011 and

Helmstaedter et al., 2013) was acquired using serial blockface EM (SBEM,

Denk and Horstmann, 2004). Tissue from a P30 mouse retina was stained us-

ing a conventional en bloc EM protocol comprising osmium tetroxide, thiocar-

bohydrazide amplification, and uranyl acetate staining steps (for details, see

Briggman et al., 2011). SBEM images were aligned as described in Briggman

et al. (2011): briefly, cross-correlation-derived shift vectors were computed in

overlapping image regions, shift vectors were globally least-square optimized,

and images were shifted using fourier-shift interpolation. The image data

(4,096 3 5,304 3 5,760 voxels; voxel size 12 3 12 3 25 nm3; dataset size

50 3 65 3 145 mm3; Briggman et al., 2011) were normalized to zero mean

and unit SD on a grid with spacing of (128 3 128 3 128) vx3 and cubes of

size (163 3 163 3 143) vx3 for the whole dataset. Each training volume was

accordingly normalized (training volumes varied in size from [256 3 256 3

256] vx3 to [512 3 512 3 256] vx3; Table S1).

The ‘‘cortex’’ EM dataset (designated 2012-09-28_ex145_07x2; K.M.B.

and M.H., unpublished data) was acquired using SBEM. Tissue from S1 cor-

tex of a P28 mouse was stained using a conventional en bloc EM protocol

similar to the retina dataset. Image data (8,274 3 5,338 3 3,321 voxels;

voxel size 11.24 3 11.24 3 28 nm3; dataset size 93 3 60 3 93 mm3) were

normalized to approximately zero mean (unnormalized mean: 122) and

unit SD (unnormalized SD: 22) for the whole dataset (see Figure S1H).

Each training volume was accordingly normalized (size of training volumes:

[100 3 100 3 100) vx3]). Images were aligned as for ek0563, but shift vec-

tors between images were weighted before global optimization. Note that a

re-evaluation of effective cutting thickness indicated a voxel size of 11.24 3

11.24 3 26 nm3; this correction was not applied to the data in this paper. All

procedures were approved by the local animal care committee and were in

accordance with the law of animal experimentation issued by the German

Federal Government.

Split and Merger Rates

The densely skeletonized segmentation test volume (see above and Figure 7A)

was used to calculate the average length between merger (Figure 2C) and split

(Figure 2D) errors (Turaga et al., 2010). To allow comparison of split-merger

metrics between independently skeletonized datasets of different neurite ge-

ometry (training and test skeletonizations from retina and cortex), we first

equilibrated skeleton node densities between skeleton sets (resulting average

inter-node distance: 460 nm).

Then, we calculated a skeleton node-to-segmentation object overlap matrix

AU
ak reporting for each combination of skeleton a and segmentation object k

(in segmentation U) the number of skeleton nodes in a that overlapped with

any voxel labeled as segmentation object k (see Figure 7C):

AU
ak =

X
m= 1::Na

dðUðiðamÞÞ; kÞ;

with Na the total number of nodes in skeleton a, iðamÞ the voxel location of the

mth node in skeleton a, and UðiÞ the label of segmentation U at location i. This
1204 Neuron 87, 1193–1206, September 23, 2015 ª2015 Elsevier Inc
matrix was then binarized at a node threshold qn, which was varied between 1

and 2 to assess the influence of labeling (i.e., skeleton node placement) noise

(see Figure 7F): AU#
ak =

�
1 if AU

akRqn
0

:

The number of mergers and splits was then calculated as

nmerger =
X

a= 1::NS

  X
k = 1::NU

AU#
ak � 1

!
�Q
 

� 1:5+
X

k = 1::NU

AU#
ak

!!

and

nsplits =
X

a= 1::NU

  X
k = 1::NS

AU#
ak � 1

!
�Q
 

� 1:5+
X

k =1::NS

AU#
ak

!!
;

with NS and NU as the number of skeletons and segments, respectively, while

Q is the Heaviside step function. Finally, the average distance between splits

ds and betweenmergers dmwas calculated as ds = L / nsplit and dm = L / nmerger,

with L the total skeleton path length in the segmentation test volume (L =

0.48 mm and 1.21 mm for cortex and retina test volumes, respectively). In

cases where no split or no merger was detected, nmerger or nsplit were set to

1 to limit error distance confidence. Segmentations resulting in only 1 merger

or only 1 split were not evaluated. Optimal inter-error distance (the minimum of

1/(1/ds + 1/dm)) was determined by a sliding 3-nearest neighbor average in the

ds-dm plane (Figure 7F).

Note that to avoid artifacts by different fractions of wall voxels in different

segmentations, the split-merger metric should be computed on fully grown

segmentations only (no remaining wall classified voxels; Figure 7F was

computed for such fully grown out segmentations only).

The code for computing this metric is contained in evaluateSeg.m

(Data S8).

SegEM 3D Image Segmentation Challenge for Connectomics

For participation in the SegEM 3D image segmentation challenge for connec-

tomics, please follow the instructions below. SegEM (segem.io) provides 279

densely volume-annotated volumes in which (100 voxel)3 are each labeled.

These volumes are sampled from throughout the cortex dataset, providing a

representative sampling of neurite geometry and image statistics (see Table

S2 for a detailed overview). To allow training of classifiers of larger field of

view, we supply the raw data for each labeled volume of size 200 3 200 3

150 voxel, i.e., with a border of 100 3 100 3 50 voxel around the labeled

volume.

For testing the split-merger metric, we provide a densely skeletonized test

set (Data S3), which was used for Figure 7F. Split-merger metrics calculation

is contained in cortex/segmentation/evaluateSeg.m of the SegEM package

(Data S8 or segem.io). For calculation of pixel, warp, rand error, and variation

of information as in Figure 7I, please use the code provided by the ISBI 2012

2D-EM segmentation challenge (see above).

For submission of results to the SegEM 3D image segmentation chal-

lenge, an email containing the code to process raw data volumes of the

same size as the training data should be sent to segEMchallenge@brain.

mpg.de. This will be evaluated on 34 test stacks of the same size as the

training stacks given above and on an additional densely skeletonized

test set from several regions in the cortex dataset. Random examples of

the raw data of these hidden test sets will be provided on segem.io, but

not the respective labels. Ranking of segmentation results will be continu-

ously updated on segem.io with respect to the ISBI challenge metrics and

skeleton-based split-merger metrics.
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